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The scattering of electrons by three-dimensional potential fields, and, in particular, the potential 
fields associated with a crystal lattice, is considered in terms of the new approach to physical 
optics recently proposed by Cowley & Moodie. The three-dimensional potential field is approximated 
by a large number of closely spaced two-dimensional potential distributions. An expression is 
obtained for the wave function on an arbitrary plane of observation for a point source of electrons 
at a finite distance or at infinity (parallel irradiation). Particular cases considered are the wave 
function at the exit surface of a crystal, corresponding to the image produced by an ideal electron 
microscope, and the diffraction pattern, or angular scattering function, of a crystal. 

Two methods of approximation to the general expressions are discussed. In the first the wave 
function on the plane of observation is expressed as the sum of the contributions of electron waves 
scattered 1, 2 . . . . .  n . . . .  times. The contribution from singly scattered waves is shown to be 
equivalent to the amplitude distribution given by the usual kinematic theory of scattering. 

The second method of approximation corresponds to the successive increase in the number of 
two-dimensional distributions by which the three-dimensional potential field is approximated. 

I t  is shown that  for the special case, in which only the incident beam and one diffracted beam 
have appreciable amplitude in the crystal, the present theory gives essentially the same result as 
the dynamical theory of Bethe. 

The present theory is particularly suited to the study of the diffraction of electrons by very thin 
crystals and crystals containing imperfections. Its applications to matters of practical importance 
in this field will be considered in a future publication. 

1. I n t r o d u c t i o n  

In  considerations of the elastic scattering, or diffrac- 
tion, of electrons by  the potent ial  fields of a crystal  
lattice, it  is cus tomary to apply  either the dynamic  
theory or the kinemat ic  theory of scattering, depend- 
ing on the nature  of the problem in hand.  In  the 
dynamic  theory, as in i t ia l ly  s ta ted by  Bethe (1928) 
and developed by various workers, the SchrSdinger 
equat ion is set up for an electron in  the periodic 
potent ial  field appropriate  to a perfect crystal  of 
infinite extent.  Boundary  conditions representing 
idealized exper imenta l  conditions are applied, and 
solutions are obtained to varying  degrees of approx- 
imation.  The kinemat ic  theory m a y  be considered as 
the zero-order approximat ion  to the dynamic  theory, 
val id for the range of values of the potent ia l  field and 
the crystal  thickness for which the intensit ies of the 
diffracted electron beams are negligible compared with 
the in tens i ty  of the incident  electron beam. 

The theory of the scattering of electrons by  the 
potent ial  field of atoms was developed along somewhat  
different lines, (see, for example,  Mort & Massey, 
1949). The so-called first Born approximation,  con- 
sidered unti l  recent ly to be adequate  for all electron- 
diffraction work, is equivalent  to the applicat ion of the 
kinemat ic  theory to atoms. Glauber & Schomaker 
(1953) showed tha t  this  approximat ion is not always 
adequate,  and Hoerni & Ibers (1953) (also Ibers & 

Hoerni  (1954)) calculated atomic scattering factors 
from a more precise, ' dynamic '  scattering theory. 

More recent ly H o e m i  (1956a, b) has developed the 
'pseudo-kinematic '  theory of scattering by  molecules 
and crystals, taking into account dynamic  scattering 
wi thin  atoms but  considering diffraction by the as- 
sembly of atoms to be kinematic .  

For a number  of problems of interest  in the fields 
of electron diffraction and electron microscopy, nei ther  
the k inemat ic  nor the dynamic  theory can be applied 
to give more t han  a qual i ta t ive indicat ion of the dif- 
fraction effects which might  be observed. For example,  
the k inemat ic  or pseudo-kinematic  theory can be 
applied to the interpreta t ion of the extensive spot 
pat terns  ( 'cross-grating' patterns) given by single 
crystals, if the  crystal  thickness is very small  (Cowley, 
1953), bu t  for thicker crystals the dynamic  theory mus t  
be invoked. However, applications of the dynamic  
theory have been l imited to cases where only two or 
three strong beams exist in the crystal  at any  one time, 
and it is difficult  to obtain even a qual i ta t ive im- 
pression of the dynamic  scattering effects in the pres- 
ence of a large number  of diffracted beams. Again, 
while the influence of imperfections of the crystal  
lattice on the diffraction of electrons m a y  in some 
cases be t reated adequate ly  by  use of the k inemat ic  
theory for th in  crystals, any  applicat ion of the dynamic  
theory to such problems would be ext remely difficult. 

A C 10 43 



610 T H E  S C A T T E R I N G  OF E L E C T R O N S  BY ATOMS AND CRYSTALS.  I 

I t  appears that  some of the difficulties encountered 
in the application of the dynamic theory may be over- 
come by employing a new theoretical approach to the 
scattering of electrons by atones and crystals, based 
on a new formulation of physical optics recently out- 
lined (Cowley & Moodie, 1957a). In this formulation 
Huygens' Principle is applied to give the amplitude 
distribution on one plane in terms of the amplitude 
distribution on preceding planes. In its usual form, 
a small-angle approximation is made, in that a spher- 
ical wave front is approximated by a paraboloid. Such 
an approximation is valid under the conditions usually 
encountered in present-day electron diffraction and 
microscopy where the electron energies are of the order 
of 50 keV. and the maximum angles of scattering 
considered are of the order of a few degrees. I t  may be 
noted that  the dynamical theory of Bethe (1928) 
was originally applied to the description of the diffrac- 
tion processes of low-energy electrons (a few hundred 
volts) with angles of scattering up to 90 ° , and no 
essential simplification of the theory has been made 
for applications to low-angle scattering processes. 

In the paper giving the theoretical basis of the new 
formulation of physical optics (Cowley & Moodie, 
1957a), expressions are derived for the wave function 
on the plane of observation resulting when light 
(or electrons) from a source traverses an arbitrary 
number of optical components, the effect of each of 
which may be represented by multiplying the wave 
function on a plane perpendicular to the axis of the 
system by some real, complex or imaginary function. 
In the present paper, we show how the effect on the 
wave function of a three-dimensional modifying sys- 
tem, and, in particular, a crystal of finite thickness, can 
be deduced from such expressions by a limiting process. 
General expressions will be derived for images and 
diffraction patterns given by thick crystals, and meth- 
ods of obtaining approximations useful for special 
cases will be outlined. In a future publication, some 
matters of practical interest in the field of electron 
diffraction will be discussed in the light of this new 
theoretical approach. 

tron waves will be changed, relative to the wave in the 
absence of a field, by an amount 

[{l+~(x, y, Z l ) /Wo}½-1] .2~Z/4o  . 

For q~(x, y, z~) < W0 this is approximately 
gAzq~(x, y, zl)/4oW o. The effect of this slice of the 
potential field on the wave function is then represented 
by multiplying the wave function by 

exp [i~Azq~(x, y, Zl)/4oWo] . 

If, as is the case for atoms, the potential field results 
from a distribution of charged particles, the electrons 
may undergo inelastic collisions with a probability 
proportional to some inelastic scattering density func- 
tion, X(x, y, zl). The effect may be considered as an 
absorption of electrons, since electrons inelastically 
scattered will be effectively incoherent with those 
elastically scattered and so may be regarded as com- 
pletely removed from the system. In recording the 
intensity distribution in the plane of observation on, 
for example, a photographic plate, the intensities of 
elastically and inelastically scattered electrons are 
added. However, only the contributions of elastically 
scattered electrons will be considered here. 

The effect of passing through the slice of the poten- 
tial field at z -- zl is thus given by multiplying the 
wave function by the function 

q(x, y, zl) 
= exp [-~X(x, y, z~)Az+i(lq~(x, y, z~)Zi-], (1) 

where 

(~ = 7e/4oW o = 2~m4o/h ~, and ~ is a constant.  

For Az sufficiently small, we may write 

q(x, y, zl) = 1-QX(x, y, zl)Az+iaq~(x, y, zl)Az . (2) 

To this approximation, the wave function leaving 
the slice of the potential field may be described as the 
incident wave minus an absorption term, plus a scat- 
tered wave 90 ° out of phase with the incident wave. 
The effect is that of an amplitude object plus a phase 
object. 

Taking the two-dimensional Fourier transform, we 
have 2. The scattering of e lectrons by a potential  field 

We consider a monoenergetic stream of electrons, 
travelling in the direction of the z axis, passing through 
a field 0f electr0st~tic p0~cn~i~l, ~(x, y, ~), The wave- 
length of the electron beam is 

4 = h/[2~{w0+~(x,  u, z)}]~ = 40{1+~(x, u, z)/w0}-~, 

where W0 is the accelerating potential for the electron 
beam and 40 is the wavelength for ~(x, y, z) = 0. 

Let us assume that in a laminar volume of the poten- 
tial field of thickness Az, centred about z = z 1, the 
potential function does not vary appreciably with z 
and may be written T(x, y, zl). 

After traversing this volume, the phase of the elec- 

where 

Ql(u, v) = I I  q(x, y, Zl) exp [ - i ( u x + v y ) ] d x d y  (3) 

~- 0(U, Y)-~zJ~I(U , Y) -~i(//]~EI (U , V), (4) 

v) = I G(U, v, w) exp (iwzl)dW , (5) Gl(U, 

v) = l E(u,  v, w) exp (iwzl)dw (6) El(U, 

and (5(u, v) is a I)irac delta function representing a 
sharp peak at the origin, of unit weight. 

In analogy with conventional diffraction usage, and 
for convenience in manipulation, we define the func- 
tion 
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Ez(O, O) = -i/Az+aEl(O, 0)+i~G~(0, 0) ,  / 
~-71(U , V) = O'El(U , v)+ieGl(u, v). , (7) 

For periodic objects, the variables u, v are replaced 
by the integers h, k. 

We make the assumption usually made in diffrac- 
tion theory tha t  the incident radiation is perfectly 
coherent and either is parallel: or else comes from a 
point source. The effects of the deviations from these 
ideal conditions, occurring in most experimental ar- 
rangements, will be considered in a future publication. 

A three-dimensional potential field may be con- 
sidered to be divided into N thin slices. The effect 
of the nth slice is given by multiplying the wave func- 
tion by q,~(x, y) on a plane at  the centre of the slice. 
The system then consists of a plane source, given by 
qo(x, y), N planes on which the wave function is 
modified, and a plane of observation, as in Fig. 1. 

t~ H 
V 

qo(X) q~ q~ q~ q._~ % ~ (x) 

Fig. 1. The no ta t i on  used  for planes  and  distances.  

The distance between the ( n - 1 ) t h  and nth plane is 
Rn, with R 1 = R~, the distance from source to the 
first object plane, and R~+I = R, the distance from 
the Nth  plane to the plane of observation. 

We consider initially functions qn(x) of one variable 
only. The extension to two dimensions is made readily. 

The wave function ~(x) in the plane of obseryation 
is given in the new formulation of physical optics 
(Cowley & Moodie, 1957a, equation (3.4)) in terms of 
the Fourier transforms, Qn(u), of the functions q,~(x) 
a s  

yJ (x) = K exp ( -  
ik, xS~ 

" ' ' * [ 2 Q 2 ( - - ~ ) * [ 1 Q I ( - - ~ ) * Q o ( - - ~ )  X 
(~sRlX2~ ] (iksR2x2~ ] [i]~sRN-lZ2~ ] 

exp~ 2R 2 )j,expk--~]3~+, (s) 

where K is a constant, k s = 2~/2, the . sign denotes 
a convolution, and the brackets are distinguished by 
subscripts. The diffraction pat tern or angular distribu- 
tion of elastically scattered electron amplitude may  
be found by expressing this wave function as a func- 
tion of the angle of incidence on the plane of observa- 
tion and taking the limit as R becomes infinitely large. 
I t  is more convenient to avoid the limiting process by 

considering instead the amplitude distribution on the 
back focal plane of an ideal thin lens placed after the 
object. By this method the diffraction pat tern is given 
as (Cowley & Moodie, 1957a; compare equation (4.4))~ 

v2(O) = K [x+l [.vQ~v(-2kfl) * [~v_l" " * [2Q~(-2ksO) 

. [1Qx(-2k, O). Oo(-2k, O)exp (2ik, RlOe)] 1 

N N+I 

where 0 is the Bragg angle, and 20 is the inclination 
to the axis of the system. 

For our present purposes, we consider the potential 
field of the object to be subdivided into N equal 
slices of thickness Az so that  in the above expressions 
we substitute 

R2 = Ra . . . . .  R~v = A z.  

Then, from equations (4) and (7) it follows tha t  

Qn(-2k, O) = iAzFn(-2k, O) , 

or, for a periodic object with periodicity a in the x 
direction, 

Q,(-2k, O) = iAz.~ Fn(h).~5 (O + ? )  

The scattering from a three-dimensional potential 
field is found by evaluating the expressions (8) and (9) 
when N tends to infinity and Az tends to zero in such 
a way tha t  ( N - l ) . A z  = H, the thickness of the field 
in the z direction. 

3. The  sca t t e r ing  of electrons by a perfect c rys t a l  

The potential distribution of a perfect crystal, con- 
sidered infinite in all its dimensions, is represented by 
the Fourier series 

qD(x, y, z) = .~ Z,.~ E(h, k, l) 

We consider a crystal infinite in the x and y direc- 
tions but  of finite thickness, H, in the z direction. 
If this crystal is divided into N slices, each of thickness 
Az, the potential distribution in one of these slices is 

~(x, y, z,) = ~7 27 E,~(h, k) exp 2~i + 
h k 

where 

E,(h, k) = ~, E(h, k, 1) exp{2zd (l~)} (10) 

t The n o t a t i o n  in the  present  pape r  differs f rom tha t  of 
Cowley & Moodie (1957a) in the  number ing  of the  componen t s  
and  intervals .  
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and similarly for ;/(x, y, zn), G~(hk) and G(hkl). In the 
one-dimensional equation (8) we substitute 

( ~ )  = i A z ~ F n ( h ) . d  x + - -  , 

giving 

ik~x~~ ~ ~v * " " 

,[:1( • .. exp \  2R 2 / j l  

[ik~Azx2\ ] {ik~Azx2\ ] [ik~xe\ ] 
× exp ~--2-R-Z-)J2. • • exp ~-2)~-~-)J .v* exp ~-~R-)J~.+, 

(11) 
:For a point source at 

x = - %  q o ( x )  = ~ ( x + x q ) ,  

and 
Qo(-k ,x /R)  = exp ( - i k ,  xqx/R).  

The bracket [~...]~ of (11) then becomes 

{ ik~Rqx~ 

!~(FI(hl) f (~(X~-Rha 1~) • exp t,[i]gsRq(x-X)2/-~ 

- R a / "  exp a ~" / " 

Substituting this expression in the second bracket 
gives 

[2" . . . .  ]~=[1" ]l" expt~--~'ik~Azx~/*F~(-~) 

= exp ik, \ ~ -~  . .~, ..,Y F~(h~).F~.(h~.) 
hl h2 

[~zi2 (h~+h~.)~.+Az.h~)} x exp[-~- (Rq 

Continuing the process of substitution, we obtain 

[ ] { 4,"" 4,=exp ik s \  -:fR~ . Z 2 . . . 
hl h2 

• . .  Z F I ( h l ) . F ~ ( h ~ ) . . . F ~ . ( h ~ T )  
hN 

x exp~--ff [Rqhl+ (Rq+Az)h~.+.. .  + (Rq+H)h3,] 

× e x p ] - ~  [Rq(hl+h2+. . .  +hx)2+Az 

× ( h 2 + h a + . . . + h x ) 2 + . . .  +Az .h2]}  . 

The wave function on the plane of observation is then 

v(x) = g (iAzV. exp { -  2R ,[[~" ] ~ *  
f f k x q  ] 

• . exp]-~-]] • 

Carrying out the convolution, we have 

~2(x) = Kl( iAz)  x 

ni (~+x~)~ 
x exp -~t (R YFR~+ ~r) J "~h, .I...h~ ~h,v Fa(h~)'F~(h~)"" 

f . . .  F~v(hz,) exp -~ -2:~i 
( n=l a J 

2zti (x + xq) .v 
× exp-ia (R--+--~-~+---H) n=l "-'y [Rq+ ( n - 1 ) A z ] h ,  I 

2~i~. ~" ,~  p,,~m[Rq+(n-1)Az] 
× exp (R+Rq+II ) , ,=I  m=,~ 

× [ R + H - ( m - 1 ) A z ]  h , h ~  (12) a S ~ ~ 

where "K~ is another constant, and p,,a = 1 for n < m 
and p ~ a = ½  for n = m .  

Generalizing this result for two dimensions, and 
substituting 

s = R + R q + H ,  ( n - 1 ) . A z  = zn and (m-1)Az = z~, 

gives 
{ ~i [(x+xq)2+ (y+yq)~]} 

~v (x, y) = K~ exp ;t s 

× . ~ . ~ . ~ . ~ , . . .  ~v ~y, Fl(hl  ' kl).F2(h2, k~) . . .  
hi kl h2 k2 h.v k:v 

. . . l % ( h ~ v ,  k , v )  

× expl-~---Y=(Rq+z,,) + - 

× exp - 2 ~  + 

_v 
[2gi;t ~ ~,= p ,m(Rq+znl (R+H_zm ) 

× exp] s n=l 
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The quantities Rq and R will normally be considered 
as parameters rather than variables in the expression 
for the wave function. However, in order to distinguish 
readily between the wave function in the general case 
and the wave functions for particular values of Rq 
and R, which will be considered later, we write for the 
general case 

v2(x, y) = ~v(x, y; Rq, R ) .  

:By using equation (10) and the analogous equation 
for G, ~ (x ,y ;  /~z, R) can be written in terms of 
F(h, k, l) only, rather than the Fn(h , k), by putt ing 

F~(h, k) = . ~  F(h~, k~, l~) exp (2~i~ nz~) , (13) 
zn 

where 

F(hn, k~, l~) = - -~z .O(h , ,  kn) exp - 

+~(h~,  ~, l~/+ioa(h~, k~, ~1. (14) 
Then, 

y~(x,y; Rq, R ) =  K~(iAz) ~ exp{ gi[(X+Xq)~+~, s (Y+Yq)2]} 

× . 2 2 . X . Z ) _ . : 2 ,  . . . . F _ , I , ' 2 ,  F(h~, k~, l~) 
hl kl ll h2 k2 12 h~V kN 12V ? ~v 

( n=~ c )  

x e x p { - -  ~ (R~+zn) + 
( 8 n = 1  

× exp~- -~ - ~=~  ( R + H - z n )  + 

2g 
× exp~27~/~*( 8 n=l ~ m~n p n m ( R q + z n ) ( u + H - z m ) =  

× \ aZ + • (15 )  

I t  may be noted that ,  in the absence of the final 
exponential term, this expression would represent 
the product of the functions given by projecting each 
slice of the crystal individually on the plane of observa- 
tion. If only the cross-product terms (n # m) in the 
final exponential term were omitted, the expression 
would represent the product of all the Fourier images 
(Cowley & Moodie, 1957c) of the individual slices of 
the crystal formed on the plane of observation. In- 
clusion of these cross-product terms introduces the 
interaction of the effects of the various slices. 

The special case of (15) of particular interest in 
electron microscopy is tha t  for which Rq is very large 
and R = 0, i.e. the source is so far from the crystal 
that  the radiation is very nearly parallel, and the 
electron microscope is focused on the exit face of the 
crystal. 

If a parallel beam of electrons is incident on the 
crystal from a direction defined by c¢~ = -%/Rq  and 
~y = -y~/R~ equation (15) for R = 0 becomes 

~(x, y; ~ ,  O) = k2(iAz) ~ 

{ ~ i 2  2} × exp - ~  (az+%) ~ l ' / ~ ' _ Y , X . . .  ~ . v / :  
hl k l l l  h2 k2 12 h~v k.N l~v 

× F(hl, k 1, l l ) .F(h 2, k 2, l~)...F(h~v, k~, 1,v) 
~v ]cn 

x exp 2~i n a b 

lnZ n ~h 2 ~]c 2 n~l /hn~ m ~_ nb~)l } + - -  
c 2a ~ 25 ~ ~ = 1 ~  + " (16) 

The final exponent in this expression may be written 
in the form 

--2~i~:Z~(~n--~n-1), 
n 

where 
2 

A, lr bronx ~krO~y 
- -  - +  .~ + (17 )  

r=l C r = l  a r = l  b 

The ~n have a particularly simple interpretation as 
distances in the reciprocal lattice space of the crystal. 
The intensities of the diffracted electrons beams from 
a crystal are given, in the kinematic theory of dif- 
fraction, by the intersection of the Ewald sphere, of 
radius 1/)l, with the distribution of scattering power 
in the neighbourhood of the reciprocal-lattice points. 
To the degree of approximation used in the derivation 
of the expressions (8) and (9) above (Cowley & Moodie, 
1957a), the Ewald sphere may be replaced by the 
paraboloid 

w = ½ ~ ( u 2 + v  2) 

for normal incidence (ax = a~ = 0), or by the parabo- 
loid 

w = ½ ~ ( u ~ + v ~ ) - ~ z u - % v  

for ~ and ~y # 0. 
~ ,  therefore, represents the distance, measured in 

the/-direction in reciprocal-lattice space, of the parab- 
oloid of reflexion from the reciprocal-lattice point with 
coordinates 

2h, ,  zk , ,  z,, 
r=l r=l r=l 

corresponding to a beam which has been diffracted 
n times, the indices of the individual reflecting planes 
being hlklll, hek212, . . .  h~k~l=. I t  is analogous to the 
'excitation error', $, of Bethe's dynamic theory of 
electron diffraction. 

The final exponent in the expression (16) then be- 
comes 

N N 
- 2 z i  Z Zn(~n--~n--1) = - 2 ~ i A z  ~," ( n -  1)($,-~n_1) 

n----I n=l 
IV--I 
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Hence (16) may  be wri t ten  

y,(x, y; ~ ,  O) = K~(iAz) "v 

x e x p  ~ - ( ~ + a ~ )  w ~ "  v ~ ~ -  
hi k~ l 1 h2 k2 12 

× F(h D k~, 4) .F(he ,  k~, l~) . . .F(hN,  ]c.v, l:v) 
N 

2 . X 2  
hN kzV lN 

-z,,) o,x)]} 

(18) 

4. T h e  d i f f r a c t i o n  p a t t e r n  of  a p e r f e c t  c r y s t a l  " 

The diffraction pa t t e rn  of the crystal  considered in 
§ 3 above, in one dimension, ~p(0), is obtained from 
equation (9) by  put t ing  R e = Ra . . . . .  Rz¢ = Az, 
and assuming parallel incident radiation,  i.e. 
Q o ( - 2 k f l )  = 6(O+a); then 

v,(O) = K( iAz )  x [.,/F~v(-2/@) * [.,._ Fx_~( -2k~O)* .  . . 

. .  . , 

× exp (2i]~sAz0~)]. . .exp (2ilcsAzO2)].v_l 

exp (2i4AzO~)] . N (19) 
J N 

The value of Rq chosen is arbi t rary ,  and so can be 
taken as zero. Then the inner bracket  of (19)becomes 

= 

Then 

[o.. .] . ,  = .F~{-2ks (0+a) ) . exp  (2ik~AzO ~) . F~(-2k~0) 
/ 

= ~" 2 ~ Fa(hl).F~(h~). 6 (0 + ~ + - -  

hi ~2 \ 

Continued subst i tut ion gives 

v2(O ) = K(iAz)-V exp {2 i k , (H-Az )O  ~} 

X 

If now 
fracted 

(h  1 -~- h 2) ~ 

] 2a 

v w VFl (h l ) .F2(h2  ) .Fz~.(hx) 
h I h~ h.N 

6 (0 + "5_a (h~+h~+. . .  +hx)  + 

exp 2~i ~_.," z,  - ~  + ~ + ~ 
t n = l  - m = n + l  

we consider the amplitude,  U(h), of the dif- 
beam in the direction 

). .v 
0 = - 2a  - y  h . - ~ ,  

where 
-V 

n=l  

the number  of summations  in (20) is reduced by  one, 
and subst i tut ing for 0 in the exponential  te rm gives 

exp - f i n  z,, kfi a 2 + + ~ :  
a m = l  

Generalizing for two dimensions, and making use of 
equation (13) to introduce F(hn, k,~, l~,) instead of the 
E,~(h., k,~), gives the ampli tude U(h, k) of the dif- 
fracted beam with indices 

N N 
h = '*..Z h,~, k = .2: k,~, 

n= 1 n= 1 

in a form analogous to (18) above: 

U(h, k) = K( iAz )  "~" exp (2ikJ-IO 2) ,_v ~ . ~ . , ~ _ y , ~ ,  . . .  
hl k l l l  h2 k2 12 

• . .  ~ .~  ~" . ._Y.F(h 1, kl, l l) .F(h2, k2, 12).. .  
hN--1 kN--1 /2,'--1 l 

• • • N ( h x _ l ,  k . v - 1 , / ~ - I ) . F  h-j?2h,, k-..~,k,, l -  In 

3"--1 

where ~---- ~. ,  the distance in the /-direction of the 
paraboloid of reflection from the reciprocal-lattice 
point  with coordinates h, k, / .  

I t  may  be noted that ,  for a ~ = a u = 0 ,  i.e. for 
normal  incidence, the diffraction pa t te rn  U (h, k), given 
by (21) is the Fourier  t ransform of the ampli tude 
distr ibution at  the exit face of the crystal,  
~ (x ,g ;  0% 0), given by (18), apar t  from constant  
terms and terms of modulus uni ty .  With  the same 
reservations, it is similarly the Fourier t ransform of 
the ampli tude distribution, ~o(x,y; c%R),  in any  
plane in or near the crystal.  

5. M o r e  g e n e r a l  p r o b l e m s  a n d  a p p r o x i m a t i o n s  

The considerations of §§ 3 and 4 above could be 
extended to give expressions analogous to (15), (18) 
and (21) for scattering from non-periodic objects such 
as isolated atoms, molecules or imperfect  crystals, 
including crystals of finite extent.  The summations  
over the integers hn, kn and In are then replaced by 
integrations over the reciprocal-lattice coordinates 
%, v,, and Wn. I t  may  also be noted t ha t  the  deriva- 
tions of the expressions (15), (18), (21) could be car- 
ried out without  making the assumption tha t  
R 2 = R a - -  . . .  = R x = A z .  For  some problems it  
may  be more appropriate  to use the distances 

z n = ~ .Rm 
m=2 

and to redefine the F, (h , ,  k~) suitably.  
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No way has yet  been found of expressing the limits 
of the general expressions (15), (18) and (21) for N 
tending to infinity and Az tending to zero, with 
( N - 1 )  .Az = H, except in terms of an infinite number 
of summations. I t  is therefore necessary to determine 
the limit for each particular problem considered or for 
approximate forms of these expressions, valid in 
particular cases. 

Two methods of obtaining approximations to the 
general expressions, of use in considerations of thin 
crystals, will be discussed in the following sections. 
In  the first we divide the general expressions into 
terms representing single scattering, double scattering, 
triple scattering and so on. The second involves the 
successive subdivision of the crystal into more and 
more parts, the effect of each part  being approximated 
by a two-dimensional potential distribution. 

6. Single- and multiple-scattering terms 

We consider first the expression (21) giving the dif- 
fraction pat tern of the crystal. From the definition 
(14), it can be seen tha t  in each set of F(hn, k,, ln) 
values, the F(0, 0, 0) is very much larger than any 
other. If therefore, the expression (21) were written 
out in full without summation signs, the largest in- 
dividual term would be tha t  containing i~lv(0, 0, 0), 
occurring for h = 0, k = 0 only. Next largest would 
be N terms for each h, k, containing ~wv-l(0, 0, 0). 
F(h, k, l). Then there would be N ( N - 1 ) / 2  terms for 
each h, k, containing 

F'v-e(0, 0, 0)..~v.,~,.,~,F(hl, kl, 11).F(h-hl ,  k - k1 ,  1-11) , 
hi k l l l  

and so on. These groups of individual terms then 
represent, respectively, the beam transmitted in the 
forward direction, beams diffracted once only in a 
direction given by the indices h, k, beams diffracted 
twice with the final direction given by h, k, and so on. 

The zero-order approximation to the diffraction 
pat tern is thus, from (21), 

Uo(0, 0) = exp (2ik~HOe). (iAz)'V.F~'(O, O, O) 
= exp (2ik~HOe). ~1 +iaAzE(O, O, O) 

-qAza(O, O, 0)} ~. 

Neglecting the exponential term of modulus unity, 
and taking the limit as N tends to infinity and Az 
tends to zero, we have 

Uo(0, 0) = exp ~iaHE(O, O, O)-qHG(O, o, 0)}. (22) 

6(a). Single-scattering diffraction patterns 
If scattering takes place in only one slice of the 

crystal, say the mth, then all hn, k~, 1 n = 0 except 
hm, kin, lm = h, k, 1. Then 

~ ' n=0  for n < m ,  
~,,-- ~ for n >_ m ,  

and 

2g- -1  

H ~ v - A z .  2" ~,~ = H ~ - ( N - m ) A z . ~  -- zm.~ . 
n = l  

Summing the amplitude of once-scattered electrons 
for all slices, and neglecting terms of modulus unity, 
we have 

Ul(h, k) = (iAz)X-~.F'V-l(O, O, O) 

x ~ ' 2 : i A z F ( h ,  k, l) exp {-2~iz,,,~}. 
m 1 

Taking the limit for N -+ 0% Az -> 0 and (N-1)Az  
= H, gives 

Ul(h, k) = exp {iaHE(O, O, O)-oHG(O, O, 0)} 

f" x .~yiF(h,k,  1). e x p { - 2 ~ i z ~ } . d z  
l 0 

= exp {i~HE(O, O, O)-oHa(O, O, 0)} 

x .,~ iF(h, k, l) (1-exp_ ( -2~iH~)~ 
l - 2 ~ i ~  ] 

= exp {iaHE(O, O, O)-oHG(O, o, 0)} 
x _,Yi[aE(h, k, 1)+i~G(h, k, l)] 

l 

x exp , -  ~iH~, • (sin--~--~) . (23, 

Assuming tha t  ~" is large for all values of l except 
one, the intensity of the reflexion is proportional to 

Ul(h, k). U~(h,/c) = exp {-2QHG(0, 0, 0)}. 
[a2E2(h, k, 1)+e2G2(h , k , / )] . (s in s xH~)/(7~) ~ . (24) 

The single scattering approximation is thus entirely 
analogous to the kinematic theory of electron dif- 
fraction. The intensity is seen to be proportional to 
the square of the (complex) structure factor and to 
the term (sin s gH~)/(ze~) u, which represents the effect 
of the Ewald sphere (or, in this case, paraboloid) 
cutting the region of scattering power about the recip- 
rocal-lattice point which has the form of the square 
of the 'shape transform' of the crystal. Inelastic scat- 
tering reduces the intensity by an exponential factor. 

Boersch (1948) has shown tha t  under the conditions 
usually encountered in electron diffraction or micro- 
scopy, oG(h, k, 1), the part  of the structure factor 
arising from the amplitude-grating effect, is small 
compared with aE(h, k, l) and can usually be neglected. 
Then 2'(h, k, l) = aE(h, k, l) and is proportional to the 
structure factor for electrons normally used in the 
kinematic theory. The presence of the i before the 
structure factor in (23) implies tha t  the scattered 
beams are 90 ° out of phase with the undiffracted beam. 
This is usually ignored in the kinematic theory, since 
it does not affect the intensities. I t  must be retained, 
however, when multiple scattering is considered. 

6(b). Multiple scattering in diffraction patterns 
The amplitudes of beams scattered two, three or 

more times are found by an extension of the method 
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used for single scattering. For example, for triple 
scattering we have all h,,, k,,, l= = 0 except that  
hm, kin, lm = hi, k 1, 11, hv, kp, lp = h~, k2, l~ and 
h,, k~, l~ = h-h~-h~,  k - k l - k ~ ,  1-11-1 ~. 

Then 
0 for 0 < n < m 
~1 for m < n < p  

~ " =  ~ for p _ < n < r  
for r _< n _< N 

and 
~=1 

~-~1 

= H'~-{(p-m)¢ 1 + (r-p)¢e+ (N-r)~}.Az 

= z ~ + z ~ ( G - $ O + z ~ ( ¢ - ~ )  • 

In the limit, neglecting terms of modulus unity, 

Va(h, k) = exp {iaHE(O, O, 0)-~HG(0,  0, 0)}. ( - i )  

× ~'~v ~v2~2~2~v F(hl, k 1, li).F(h2, ko, l~) 
hi kt l 1 h 2 k 2 l 2 l 

× F ( h - h l - h  2, k - l q - k e ,  1-1x-l~) 

x • exp {-2zd[zl¢l+z~.(¢~-¢l ) 
d 0 z 1 zil 

-{-' Z3 ($ - -  ~'2)]} dza  . dz~ . d z  1 

= exp {iagE(O, 0, O)-eHG(O, 0, 0 ) } . i  a 

× 2 2 ~ 2 2 ~ . ~ ' F ( h ~ ,  k 1, li).F(h2, k2, l~) 

x F(h-h~-h~,  k -k~-k~ ,  l - l~-l~)  
exp (-2~1¢H) ~exp ( 2 g i ~ H ) - I  

x (2~i)a [~'1 (~'1- ~'~) (~1- ~') 

exp (2~ri¢~H)-i exp (2z iCH)- l~  
+ ~ ( ~ - $ 1 ) ( G - ~ )  ~ ~(~-~1)($-~) ) " 

(25) 

Generalizing this result, for n-times scattered beams, 
we have 

U,(h, k) = exp {iaHE(O, O, O)-~HG(O, O, 0)}.i '~ 

× 2 2 . ~ , v 2 2 .  • • ~: .X _,~.F(hl, kl , /0.F(h2, k~, 12)... 
g hl k l l l  hn--i kn--1 ln-1  

( .=1n--1 n--1 r = l n - - 1 ) e x p  (-2ziSH)(2~i) n . . . F  h - × h , ,  • 
r = l  

[ exp (2~ri.~H)- 1 
× 

n-1 exp (2xd~'~H)- 1 + 2  
a=~ ~a($~-$1).. .  (~-Sm-~)(~m-~m+l)... ($~- ~) 

exp (2uiSH) - 1  
+ ~ ( ~ - ~ ) - ( $ - ~ J . . .  (~-~n-1)] " (26) 

The total amplitude is given by 

co 
U(h, k) = ~ Un(h, k) . 

n=O 

6(c). Single-scattering approximation to the microscope 
image 
A similar series of approximations may be made to 

the amplitude distribution corresponding to the image 
seen in an ideal electron microscope, with parallel 
incidence and R = 0. The zero-order approximation 
to equation (18), taking ax = av = 0, is 

~v0(x, y; c~, 0) 

= K exp {iaHE(O, O, O)-oHG(O, O, 0)}. 

If we make the single-scattering approximation in 
the same way as in § 6(a) above, and consider the 
case of normal incidence (a~ = a u = 0) only, we have 

?[)1(;~, y; oo, 0) 

= K(iAz)2VF~v-l(O, 0, 0)~v__F2~ ~v F(hm, kin, lm) 
m~nkm~n 

lmz\ | 

where 
~o = $(hm, kin, O) = -½2(h~/ag+k2/be) . 

The summation over hm, km and lm represents the 
inverse Fourier transform of the product of F(hkl) 
and exp (-2~iz$0). The inverse Fourier transform of 
exp (-2~tiz$0) is 

(l +i)ab exp {ig(x~+ Y2) } 
2~z 

Hence, in the limit as N->oo, Az-+0 and ( N - 1 ) . A z = H ,  

y~i(x, y; 0%0)= Kexp{iaHE(O,  0, 0)-~HG(0,  0, 0)}. 

f : i  [ (l +i)ab × {~(~, y, z)+iex(x, y, z)} ,  2 ~  

× e x p (  ;tz JJ " 

If 2 is very small, ~o will be small, and (27) reduces to, 

~vl(x,y; c¢, O) = K 1 exp {iaHE(O, O, O)-~HG(O, O, 0)} 

f × {iaf(x,  y, z ) -eX(x  , y, z)}dz, (28} 
0 

i.e. the image of the crystal is obtained by projectior~ 
of the structure in the direction of the incident beam. 
I t  may be noted that  the contribution of ~0(x, y, z} 
being 90 ° out of phase with the unscattered beam, 
%@, y; c~, 0), will not affect the intensity distribution. 
The only image of the lattice visible will be that  due 
to the much smaller term QZ(x, y, z). 

The modification of yJl(x, y; 0% 0) due to finite 2, 
is represented by the convolution in (27). The effect 
on the image intensity distribution is not easy to 
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assess, but will, in general, represent a loss of resolu- 
tion. 

The contributions of beams scattered twice, three 
and more times to the amplitude function yJ(x,y; 0%0) 
can be assessed by an extension of the method used 
for single scattering, as in the case of the diffraction 
pattern. 

7. Successive subdivision approximations  

A method of approximation to the general expressions 
derived above for the scattering of electrons by crys- 
tals, which may be of use for some problems, is to 
consider the crystal of thickness H subdivided into N 
crystals of thickness H/N, assuming that each sub- 
crystal may be approximated by a two-dimensional 
potential distribution and that  all subcrystals scatter 
coherently. 

7(a). First approximation, N = 1 
Neglecting the inelastic scattering term, y,(x, y, z), 

the crystal is approximated by a potential distribu- 
tion T(x, y) on a plane through the crystal, where 

. H  / .  

( x , y ) = ~  ~(x,y,z)  dz. 
0 

The effect on the wave function is then represented by 
multiplying by 

q~(x, y) = exp {iacf(x, y)}. 

For a point source, distance Rq from the object plane, 
the wave function on a plane of observation at a 
distance R is 

~v'(x, y; Rq, R) = K.~,~Y,E'(h, k) 
h k 

×oxp{ 
(R+Rq) 

x exp((R+Rq) ~ + ~  , (29) 

where E'(h, k) is the Fourier transform of 
exp {ieq~(x, y)}. This expression represents the totality 
of Fourier images of a phase grating. The nature of 
these images is the subject of a separate publication 
(Cowley & Moodie, 1957b). 

The diffraction pattern, in this approximation, is 
simply 

U'(h, k) = K~.E'(h, k) , 

where K~ contains constant terms and terms of 
modulus unity. This is equivalent to a pseudo- 
kinematic theory of diffraction by a crystal with the 
assumption that  the Ewald sphere is planar. If 
acf(x, y) is so small that  the exponential can be ap- 
proximated by l+iaq~(x, y), then E'(h, k) = (~(h, k) 
+i(rE(h, k). Ignoring the delta function and the i 
then gives the kinematic theory for a planar Ewald 
sphere. 

7(b). N = 2  
The scattering of the crystal is here approximated 

by the scattering of two planar potential distributions 
a distance H/2 apart. This is a special case of the more 
general problem of the successive scattering by two 
crystals, treated in detail elsewhere (Cowley & 
Moodie, 1957d). 

In particular, the diffraction pattern for a~=~y=0 
is given by 

U"(h, k) = K I . ~  2 E~(hl, k~) .E:(h-h 1, k-k~) 
h~ k 1 

× exp -2~ i~  ~- [2a2 

where E~(h, k) is the Fourier transform of 
Ill/2 

exp {iaql(x, y)} with ql(x' Y) = ,,o q(x, y, z)dz 

and E~(h, k) is the Fourier transform of 

, H  

{iaq~(x, y)} with q2(x, y) = t~xffp(x, y, z)dz . exp 

For H very small it is evident that  this reduces to the 
first approximation, since, without the exponential 
term, U"(h, k) is the Fourier transform of 

exp {iaq~(x, y)}.exp {iaq~(x, y)} = exp {iaq~(x, y)}. 

Subdivision of the crystal into a sufficiently large 
number of parts will lead to the general expressions 
(15), (18) and (21) derived above. 

8. The t w o - b e a m  approximation 

Although it is envisaged that the principal applica- 
tions of the present theory will probably be in con- 
sideration of relatively thin crystals, it is interesting 
to confirm that  for thick crystals it gives the same 
result as the dynamic theory of diffraction of Bethe 
in the special case most commonly treated by that 
theory, namely, the case where only two beams of 
appreciable intensity exist in the crystal, the primary 
beam and one diffracted beam. 

We assume that  the paraboloid of reflexion (equiv- 
alent to the Ewald sphere) is close to the reciprocal- 
lattice point h, k, l, passes through the origin, 0, 0, 0, 
and does not approach any other reciprocal-lattice 
point, i.e. ~o = 0, ~h is small, and all other $ are so 
large that  all terms in the general expression (21) 
containing them may be neglected. We then express 
the general expression as the sum of the contributions 
of beams scattered once, twice, three times and so on, 
as in § 6 above, scattering here referring to changes in 
the direction of propagation. 

Only the amplitude in the h, k direction will be 
considered. Thus, the zero-order term Uo(h, k) has no 
component in the h, k direction and so is omitted. The 
single-scattering contribution contains only one term: 
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tha t  involving ~h with the coefficient Fh (the single 
index h being used in abbreviation of the index triple 
h, k, 1). From (23), 

U~(h, k) = - e x p  {iaHEo-~HGo}iFh 

exp (--2~i~hH){exp (2~i~hH)--l}.  
x 2 ~ i ~  

The double-scattering contribution has no term in the 
direction h, k containing only $0 and $1,. The triple- 
scattering contribution contains only one term in the 
h, k direction involving $0 and ~h only, namely tha t  
for which ~ = ~h, ~ = ~0, ~ = ~" Thus 

U~(h, k) = exp {iaHEo-~HGo}.i~Fh.F~.F~ 
. I I  , H  . H  

• 0 z 1 z2 

= F h . Y~. (27d ~,) a 
exp {iaHEo-~HGo}.ia. ~ exp (-2xd$~,H) 

× [ ( - 2 ÷ 2 ~ i ~ h H ) e x p  (2Xd$hH)-(2+27d$aH)]. 

The next  contribution is from the five-times scattered 
term with ~ =  ~h, $~= ~0, ~a=  ~ ,  ~ , = ~ 0 ,  ~ = ~ h -  
This is 

U~(h, k) 
= exp { i ~ H E o - e H a o } . ~ . Y } .  exp ( - 2 ~ '~ H)  

(2zdShH)2~ 
x [{6-3(27d~,,H)+ ~.~ ] 

(2~i~'~H)'~] . 
x exp (2~i~hH) -- ]6+3(2~i$aH) + 

Using the abbreviations s = 2g$,, t~=  F~F~,/4z~ 
= F~.Fi/s ~, the sum of all contributions to U(h, k) 
can be expressed as 

Y(h, k) = exp {iaHEo-qHGo}it(F~/F~,)½ 
x [{1-exp  (-isH)}(1-2t~+ 6 ta -2Ot~+ . . . )  

+ {1 +exp (-isH)}(1-3t~+lOt~-35t~+...)  
+ { 1 - e x p  ( - isH))(1-4t  ~+ 15t ~ -  . . . . . . . .  ) 
+ {1 +exp (-isH)}(1-5t2+21t ~-  . . . . . .  , .) 
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  )] 

= exp {iaHEo-eHGo}it(F,,/F~)½. 

x Z cn+~'m(it) 2m 
n = O  ~ • /tt=O 

o~ (_Hst~), ¢,,, 2m(it)~m ] - exp (- isH) 2 2 C~ + . (30) 
n = 0  n ! m = 0  ] 

Summations of the form . I  "+~  m Cm a can be evaluated 
m 

by use of the following relations between the bi- 
nomial coefficients for which no formal derivation or 
reference to the literature can be given, but which 
may be readily verified by expansion: 

o o  

_~ ~ C~+2m{a(1-2~)-l}2m, Z Cm'm*+2~a'm = (1 __ O ~ ) - - n - - 1  
: m = O  m = O  

oo (30 
~F 2m_ m C~ ~ ( 1 _ 2 a ) - 1  ~: 2m f = C m ).a (1-- 20~)-1} 2m 

m = 0  ~n~O 

oo oo C n  n +  2m Otm ~ . "  On+ l + 2 m  m ( ~ 2 n + 2 + 2 m ~ v m  1 - C~ a = a ~ ' ~ , , ,  ~ _ 
m = 0  m = O  m = 0  

Thus we derive 

2m_ ,, (1 - 4~)-½ , C~tt (J¢ 
m 

2 1+era. m (2a)-a{(l_4cQ-½_ 1} C m  Og 

~C~+"mam= (2a2)-~{ (1-2a) (1-4a)½ 1 

= {4~x2(1-4(x)½}-x. {1-- (1--4a)½}2 
and so on. 

Hence 

2" (H~t')--~ 2 C~+~"(it) ~m+~ 
n n!  ,n 

it [ iHst~{l_( 1 + 4t~)½ } 
(1 +4F)½ 1- - -~- / -  

(Hste) ". 
{1-(1+4t2)½} ~ -  .] 

+ -~-.~ 4 - f  "" 

(1 +4t~)½ exp { 1 -  (1 . 

Then 

U(h, k) = exp (iaHEo-~HGo).it(Fh/F~)½ 
x (1 +4t2) -½ {exp [-½isH{1-(1 +4t~)½}] 

- exp [+½isH{1-(1 +4t~)½}-isH]} 

= exp (iaHEo-eHGo) {Fhl ½ it exp (-½isH) 
\ F i ]  (1 +4t2)½ 

Hs 
x sin ~ -  (1 +4t~)½. 

Substituting for s and t gives, finally, 

U(h, k) = exp {iaHEo-eHGo}iF h exp (-2~iShH) 

sin H (z2 $~ + F1,F-~)~ 
× 2(~2~+Fh.F_~) ½ (31) 

If we neglect the component of Fh due to inelastic 
scattering, and assume a centre of symmetry  so tha t  
El,----ET,, this reduces to 

U(h, k) = exp {iaHEo-QHGo-27d~,H}iaEh 
H ~ 8 2 ½  sin (~ ~h+aEh) 

X 

Apart  from the exponential factor, this expression is 
identical with that  obtained from the usual dynamic 
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theory under the same assumptions, (see, for example, 
Pinsker, 1953), namely, 

vhsin ½1cH{(O-Oo) 2 sin 2 20 +vh/]c~2 4)½s 
2 4 7'h =-~  {(O_Oo)~ sin~ 20+v,jk~}½ 

since from the definitions of the various quantities it 
can readily be shown that  

E h = vh/2k, and ShA = (0-00) .s in20.  

9. D i s c u s s i o n  

It  may be noted that  the derivation of the amplitude 
of the scattered wave for the two-beam case by the 
above method is not very much simpler than the deri- 
vation by means of Bethe's dynamic theory, even 
though the mathematics might be considered to follow 
the physical processes more closely and the nature of 
the approximations made may be seen more readily. 
Nor does the present theory, as it now stands, offer 
any much more convenient way of calculating am-: 
plitudes for thick crystals when more than two strong 
beams are present. However, the application of the 
theory to such problems is of secondary interest, 
particularly since only rarely in practice are the 
appropriate experimental conditions found, i.e. the 
crystal is relatively thick, has parallel faces and has 
no lattice imperfections. The formulation of the theory 
is such as to make it particularly suited to the discus- 
sion of relatively thin crystals, not much thicker than 
the limit for which the kinematic theory is valid, or 
crystals containing lattice imperfections, giving a large 
number of diffracted beams simultaneously. The re- 
sults are thus of particular interest in connection with 
structure analysis of small single crystals based on 
their electron-diffraction spot patterns. The methods 
of structure analysis now used are based on the 
assumption that  the intensities of the diffraction spots 
are correctly given by the kinematic theory. The 
experimental techniques of specimen preparation and 
examination are not as yet sufficiently developed to 
ensure that  this assumption is always justified. I t  is 

therefore necessary to know how the intensities may 
be modified ff the crystal thickness or degree of lattice 
perfection is such that  some 'dynamic' scattering 
takes place. 

Considerable interest in the nature of electron- 
microscope images of crystal lattices has recently been 
generated by the observation by Menter (1956) of 
features in electron micrographs which represent, in 
some sense, the coarser features of the lattice structure 
of some crystals. I t  seems probable that  the present 
theory may be of use in connexion with the inter- 
pretation of such images. From the limited discussion 
given above it is evident that  the image may be 
regarded as a projection of the crystal lattice on the 
plane of observation only in very special circumstances. 

Finally, it may be emphasized that  the description 
of the scattering of electrons by crystals may be 
applied more generally to the scattering by periodic 
or non-periodic objects of any form of radiation, 
including visible light, X-rays, neutrons etc., providing 
only that  the scattering process is scalar, and that  the 
angles of scattering involved are small. 
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